Robust Permanence for Ecological Maps | SIAM Journal on Mathematical Analysis | Vol. 49, No. 5 | Society for Industrial and Applied Mathematics

نویسندگان

  • PAUL L. SALCEANU
  • SEBASTIAN J. SCHREIBER
چکیده

We consider ecological difference equations of the form xt+1 = x i tAi(xt), where x i t is a vector of densities corresponding to the subpopulations of species i (e.g., subpopulations of different ages or living in different patches), xt = (xt , x 2 t , . . . , x m t ) is the state of the entire community, and Ai(xt) are matrices determining the update rule for species i. These equations are permanent if they are dissipative and the extinction set {x : ∏i ‖xi‖ = 0} is repelling. If permanence persists under perturbations of the matrices Ai(x), the equations are robustly permanent. We provide sufficient and necessary conditions for robust permanence in terms of Lyapunov exponents for invariant measures supported by the extinction set. Applications to ecological and epidemiological models are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Averaging Principle for Nonautonomous Slow-Fast Systems of Stochastic Reaction-Diffusion Equations: The Almost Periodic Case | SIAM Journal on Mathematical Analysis | Vol. 49, No. 4 | Society for Industrial and Applied Mathematics

We study the validity of an averaging principle for a slow-fast system of stochastic reaction-diffusion equations. We assume here that the coefficients of the fast equation depend on time, so that the classical formulation of the averaging principle in terms of the invariant measure of the fast equation is no longer available. As an alternative, we introduce the time-dependent evolution family ...

متن کامل

Robust Permanence for Ecological Differential Equations, Minimax, and Discretizations

We present a sufficient condition for robust permanence of ecological (or Kolmogorov) differential equations based on average Liapunov functions. Via the minimax theorem we rederive Schreiber’s sufficient condition [S. Schreiber, J. Differential Equations, 162 (2000), pp. 400–426] in terms of Liapunov exponents and give various generalizations. Then we study robustness of permanence criteria ag...

متن کامل

Permanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales

In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.

متن کامل

Robust permanence for ecological equations with internal and external feedbacks.

Species experience both internal feedbacks with endogenous factors such as trait evolution and external feedbacks with exogenous factors such as weather. These feedbacks can play an important role in determining whether populations persist or communities of species coexist. To provide a general mathematical framework for studying these effects, we develop a theorem for coexistence for ecologica...

متن کامل

Dissipative Boundary Conditions for Nonlinear 1-D Hyperbolic Systems: Sharp Conditions Through an Approach via Time-Delay Systems | SIAM Journal on Mathematical Analysis | Vol. 47, No. 3 | Society for Industrial and Applied Mathematics

We analyze dissipative boundary conditions for nonlinear hyperbolic systems in one space dimension. We show that a known sufficient condition for exponential stability with respect to the H2-norm is not sufficient for the exponential stability with respect to the C1-norm. Hence, due to the nonlinearity, even in the case of classical solutions, the exponential stability depends strongly on the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017